

forAM[®] CuCr1Zr GA

Advanced copper alloy for Additive Manufacturing

forAM CuCr1Zr is a gas atomized powder specifically designed for good printability with a minimum of printing defects paired with its high electrical and thermal conductivity. This alloy addresses a wide range of AM technologies such as PBF-LB, DED and Cold Spray. Typical applications are components for electrification, inductions coils and heat exchangers.

Equivalent materials: >> CW106C

For more information on forAM product line and other of Höganäs products, please contact your local sales representative.

Powder properties

Chemical composition, wt		
Element	Content, %	
Cu	Bal.	
Cr	0.8	
Zr	0.08	
Fe	<0.08	
Si	<0.10	
Others, total	<0.20	

100 μm* Vergrößerung = 100 X D ⊢−−−−−−

Typical powder properties		
Nominal particle range	20-63 µm	ISO 13322-2
Hall flow	12 s/50 g	MPIF03; ASTM B213; ISO 4490:2018
Apparent density	5.0 g/cc	MPIF04; ASTM B212; ISO 3923-1:2018

Standard packaging:

10 kg (3.6 L Curtec container, under Argon cover gas)

(Other tailored particle sizes and packaging are available under conditions)

At Höganäs, we have designed our high-quality 3D printing metal powders for the special requirements of additive manufacturing. Manufacturers all over the globe achieve optimal results with our products and value them for the following characteristics: excellent flowability, good spherical shape, controlled oxygen and nitrogen content, full and high packing density and perfect reproducibility.